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Propagation of an unsteady combustion wave in an inhomogeneous unsteady 
gaseous medium with slowly varying parameters is investigated. Distribution 

of reagent concentration and of temperature in the system is assumed to be 
similar. Equations defining the evolution of a three-dimensional combustion 
wave are derived, and a number of examples is considered. 

The classical problem of the theory of combustion is that of steady propagation of 
a combustion wave in a homogeneous medium [ 11. However in a number of cases the 
distribution of thermophysical properties of the medium depends not only on coordinates 

but, also * on time. The propagation of a combustion wave is then unsteady and may be 

accompanied by flame front distortions. 
To study the effect of time and space inhomogeneities on the combustion wave we 

shall consider the propagation of a steady reaction wave in a medium whose therm0 - 
physical parameters are variable. For the analytical investigation of this problem we 
assume that these inhomogeneities vary substantially in space and time intervals 0 (a-l) 
that are considerable in comparison with the scales of the heat layer characteristic 

thickness x / u,t and its characteristic rearrangement time (x / u,t2), respectively. In 
these expressions x is the thermal dissipativity of gas, ltst is the steady propagation 
rate of the combustion wave, and 0 < E (( 2 is a small dimensionless parameter that 
defines the variation rate of thermophysical parameters. We assume that variation of 
the medium properties can be of the order of (0.1) . 

Interaction between an acoustic wave and a combustion wave can be cited as an 

example, taking into account that in real systems the acoustic wave length A may con- 
siderably exceed the thickness of the steady heat layer, so that basic variations of tem- 
perature and concentration take place in a pressure field that is uniform in space and 

depends on time. The following relationships must then be satisfied: 

cl0 - A g=- xlu,, (0.1) 

where c is the speed of sound and 0 is the acoustic wave frequency. 
The results of the present investigation can be applied for defining the interaction 

between a combustion wave and a sonic wave of fairly low fequency for which the fol- 
lowing relationship is valid 

Note that for the characteristic values ust = 192 cm, x = 10-l cm 2/set, c = 
iOs cm /set and x/u,l = 10p3 cm inequality (0.1) is valid when o < to* Hz, while 

inequality (0.2 ) holds when 0 < i05 Hz. Thus the investigation covers a fairly wide 
range of frequencies. 
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A model problem of combustion wave propagation in gas for which the Lewis num- 
ber is unity is considered below. It is shown that in many cases distortion of the wave 
profile may be apparent already in the zero approximation with respect to E. Varia - 
tion of the temperature field in time and space, as well as the velocity of motion of 
isothermal surfaces are determined. 

1, Basic e qu a tf o ns . The model problem of unsteady wave pro~gation in a 
medium may be defined on a number of assumptions by the following demensionless 
equation : 

ae @‘e 
at= ax= -+~+~+f2(~,~,y,~)F(~) (1.1) 

where Q is the temperature; X, Y, and Z are space coordinates; 5 - XE, y =: YE, 
z = ZE, TC = it, and 0< E< 1; function f defines temporal and spatial inhomo- 

geneities( fzz 1 when t-0 >; F (e) is a nonlinear function that defines the. 
dependence of the heat release rate on temperature, In what follows we assume that 
f = 0 (1). 

The quantities x / uSt2 and x , list are taken as the scales of time and space I 

variable-s, respectively. 
Usually 

0<@,<1, F(O)=F(1)==0 (1.2) 

It is assumed that when t < 0 a stable steady combustion wave propagates in the 
gas along the axis X (f 5 1). 

Then for t < 0 we have 

-+$ d2fp 
dS" +wf+=o 
cp(---“)=I, cp(-+00)=0 

0 (X, t) = cp (s), s = x - t 
It was shown in [ 2.3 ] that the problem (1.3 ), (1.4 ) has a solution when 

F'(O)> 0, F'(1) > 0; 8 E LO, a), F (e) > 0 

8~(0, 41, F(@)<O; o<a<<i 

or under conditions [ 41 

F'(O)< 0; 0 E [O, a), F (8) < 0 

@E[U,f), F(O)>>,; O<a<l; 5P(@)de>O 
0 

and also when [ 5 ] 

8 E 10, 61, F(9)r 0; 8 E f6, 1) 

F(W>O; O<S<I 

(1.3) 

(1.4) 

(1.5) 

(1.8) 

(1.7) 

For the analysis it is important to know the asymptotics of ip (s) when s + + co. 
It follows from (1.5 ) - (1.7 ) and (1.3 ) that cp (s --t -f- 00) = 0 fexp (-as)), 

a> 1. Hence the integrals (1.8 ) 
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I1 = (1.8 ) 

which appear subsequently, do exist. 
In a number of cases integrals 11 and 1s can be approximately estimated. Thus 

often in the theory of combustion function F (cp (s)) - 0 (1) only in the interval 

considerably smaller than unity, while for the other values cp - 1 F (cp) 1 (( 1. 
Hence the approximation [ 61 

seems fairly reasonable. The quantity I = II-1I2 that appears subsequently is appro- 
imately 

1 = 1 + o (1) 

Usually the solution of (1.3 ), (1.4 ) in closed form is not known. However app - 
roximate methods can be used in many cases for the determination of rp (S) . Thus 
for function F (0) - (1 - @)n exp (/3 (0 - I)) (fi > 1) typical in the theory of 
combustion ,it is possible to use methods of matching asymptotic expansions [ 7, 81. 
Note that the presence of two small parameters b-’ < 1 and E (( 1 does not lead 
to an inconsistency of respective expansions, since expansions in p-1 are formed in 

region X - 0 (@-r),while those in E are obtained in X - 0 (e-1). 

For Eq. (1.1) we have the following boundary conditions : 

X=-w, 0(-w, Y, 2, t)=i (1.9) 

x=+00, O(+co,Y,Z,t)=O. 

For a finite X the solution of (1.1) must be bounded for any Y, 2, and t. 
The initial condition for (1.1) is of the form 

0 (X, Y, 2, 0) = ‘p(X) (1.10 1 

2. The method of solution. Weseekasolution of(1.1),(1.9),(1.10) 
of the form 

@ (X, Y, z, t; E) = f%(~l, .T, y, 2. T) + &(q, 5, y, 2, T) + . . . (2.1) 

assuming that expansion (2.1) is uniformly valid, i. e. that 0, / 0, s 0 (1) for all 

(x, Y, 2, T), where 

1) ~- g (1, y, 2, -c; &)t.-l; 5 --= g, (X, y, z, t) + &(Z, y, 234 i- . . * (2-Z) 

A similar method was used in [ 91 for obtaining solutions of nonlinear equations of 
the hyperbolic type and for determining the shape of solitary waves (soletones) over 
floor of varying shape [ 10 1. The described method was also used in a number of other 
investigations [ 11,121. Passing from variables (_X, Y, Z, t) to(q, x5 y, z, a)by formulas 
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“+& +& = IvgI”;q~+ 
ax2 

E (2(AEV) + + V2E +J + e2V2 

a -==- 
at a +s+ at 

(2.3) 

(2.4) 

where V and V2 are operators in T (r = (r, y, z)) . 
Substituting (2.1)) (2.3 ) , and (2.4 ) into (1.1) and equating terms with like powers 

of a, for the first two terms of expansion (2.1) we have 

1 v&&$! - 2 $$ + f” (r, z) F (6,) = 0 (2.5) 

1w2+ 
3% 

I_- 

at 2 (V&V) -c$ - v&J $$ - 

(2.6 1 

We assume that solutions of Eqs. (2.5 ) and (2.6 ) satisfy boundary conditions (1.9 ), i. e. 

0, (- 00, r, r) = 1, 0, (-t-m. r, T) = 0 (2.7) 

0, (- 00, r, T) = 0, O1 (+ 00, r, 7) =- 0 (2.8 1 

Equation (2.5 ) formally conforms to the equation that defines the steady combustion 
wave(l.3),(1.4). The solution of Eq. (2.5) is ofthe form 

0, (rb r, z) = Y’ (f 1 V EO ( -% + 0) (2.9) 

where a = a (P, .t) isanarbitrary functionand function Y (s) satisfies the equation 

$$+vF + F(Y) = 0, V = - $ j-1 1 v’r;, I-’ 

Y (- co) = 1, Y (-t m) = 0 

The equation for EO (r, T) of the form V = 1 with Y (s) G cp (a) follows 
from (1.3 ) and (1.4 ). From this we have 

ato - = -flVE,I. Eo(r,O)= 2 az 
(2.10) 

For determining function a (r, r) we shall analyze Eq. (2.6). First of all we note 
that owing to the dependence of function y on the combination f ) t go ) -1 q + 

a b, T) in (2.9 ), function E1 (r, T) can be assumed, without loss of generality, 

equal zero. In what follows we assume gr s 0. 
Equation (2.6 ) is linear with respect to 0, and is a variational equation relative 

to Eq. (2.5 ), From the Poincar; ‘s theorem [ 13,141 follows that the fundamental 
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solutions of Eq. f Z-6 ) is represented by functions 

where 0 (‘t’) i- A, B) is the general solution of (2.5). and A and B are arbitrary 
functions of r and t. It follows from this and Eq. (2.9) that the solution of the homo- 

geneous equation (2.6 > with condition (2.8 ) is propor~onal to 443, t dn. Since the 
solution y2 (q) does not satisfy boundary conditions s i, e, it does not vanish at both 
ends of the interval 7 -+ - 00 to 7) -+ + cc, hence for solving the inhomogegeous 

boundary value problem the right-hand side of (2.6) must be orthogonal with weight 
exp (- 1 VIE,, I-“qcY!& I a~) to function $Qs / 13q which is the solution of the 

homogeneous boundary value problem [ 15 3, i. e. to the solution of the homogeneous 

equation conjugate of (2.6 ) . Then 

g(r,+= -Iv%,~-2a&Jaz 
Taking into account that 

F%ov)~ = (V%&) 

a% dtp --=gx % 
we obtain the orthogonality condition of the form 

Passing in (2.11) from the variable 9 to s by formula q = (a - a)/g and in- 

troducing the new unknown function A (r, T) 

we obtain 

Ar ‘c (-$)” es ds - 2gV%oVd +f $3 e” ds -j- (2.12 1 

-CD 

g-+jyL (~pds - 2;:1 (V%,V) p’Pe* (.$)“:* - 

-Q) --m 

2g-l (V%oV) g -iJw 

i-w 
eLi!k!&& _ V2%o 

ds dsa 
-0D --60 
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Assuming the existence of integrals appearing in (2.12 ) and integrating by parts, 
we obtain 

where 1, and ,is are conWItS. 
From (2.12) and (2.13 ) we have 

V2Eo = 0, I = S,I,-1 

AS an exampfe of application of the obtained results we consider the case of 

f (r, r) = II, (“r) 

in which from (2,9), (2.10 ), and (2.14) we have 

3, Discussion of results, The first approximation of the solution of the un- 
steady problem (I. 1 f , f&9), and (1.10 ) was derived in Sect. 2 t 

The most important characteristic of a combustion wave is the propagation rate of 
isotbermal surfaces. In the steady state (f E 1) the velocity of motion of all iso - 
thermal surfaces is the same and constant. in the case of non~o~tant function, velocity 

may be determined as implied by (2.9) , by formula 

f (r, 7) I vfo I -I Eo (r, 7) = B (3” 1) 

where B is a constant dependent of the temperature of isothermal surfaces s 
Xt was pointed out in [ 121 that the solution derived by the method used in this work 

effectively defmes the pattern of temperature distribution only in some neighborhood of 
the front t while a fair distance from the latter that solution is inadequate. Hence in what 
follows it is assumed that everywhere B = 0 (e). 

Differentiating (3.1) with respect to t we obtain 
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where G (t) is the solution of Eq. (3.1) . 
Note that it is possible to attempt to obtain a solution of the problem (1.1)) (1.9>, 

(1.10) by a different method based on the slow variation of function f (r, T). Assuming 
that f is fixed we obtain a solution of the problem of the form 

0 = cp (f (a - d) c-l) (3.2) 

The inapplicability of this formula can be readily demonstrated. Let US, for inStanCe, 

consider f (r, r) = @ (r) and CD (z) = 0 (1). The propagation rate of the iso - 

therm CD (~)(a+-ZCD (z)) = B is then 

CJX / dz = @ (r) + MD / dT + 0 (E) (3.3 1 

When r -+ 00 and d@ / dT = 0 (1) the wave propagation velocity approaches 
infinity, which is evidently false. 

In the considered case from (2.15 > and (3.1) we have 

v = (OX, 0, O), v, = 0 (‘t) + 0 (e) (3.4) 

which shows that when ‘G -+ 00 the velocity remains constant and d@ / d-c = 0 (I). 
Note that in transient modes in @ (+ oo) = @+ = const both solutions (3.3) 

and (3.8) when f (I’, r) = @ (r) and 

(z - ?@+)&-1). 

r = + o. define the steady solution cp (CD, 

In the general case the. propagation velocity of the isothermal surface is normal to 

f (r , o) and does not conform to the direction calculated by the ” quasi-steady” formula 

f (X - rf) = c.onst 

Note that Eq. (2.10 ) derived in Sect. 2 can also be used for obtaining approximate 
solutions of other similar problems such as, for instance, the description of the evolution 
of a stable combustion wave penetrating a region with variable thermophysical para - 
meters, In that case it is necessary that conditions E,, (r, z) = z when X --+ - 00. 

In the more general case when the transport coefficients depend on r and r instead 

of (1.1) we have 

&a (r, -c)d@ / 6~ = 9 V (b (r, ~6) V 0) + c2 (T, r) F (@) 
b>O, a>0 

Then, instead of (2.9) and (2.10) we obtain 

The proposed treatment is also suitable in the case of explicit dependence of F 
on r and r. 
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The author thanks Iu . S , Riazantsev for valuable discussions. 
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